Зміст

Випромінювання небесних світил. Абсолютно чорне тіло. Телескопи.


Випромінювання небесних світил.

Астрономи збирають інформацію про події в далекому космосі. Виявляється, що основним джерелом такої інформації є електромагнітні хвилі та елементарні частинки, які випромінюють космічні тіла, а також гравітаційні й електромагнітні поля, за допомогою яких ці тіла між собою взаємодіють. Сонце та зорі випромінюють електромагнітні хвилі різноманітної довжини. Планети та їхні супутники відбивають сонячне світло й самі випромінюють інфрачервоні промені й радіохвилі. Розріджені газові туманності випромінюють електромагнітні хвилі чітко визначеної довжини.

Випромінювання небесних тіл, що не доходить до поверхні Землі, досліджується за допомогою штучних супутників, наукових орбітальних станцій, які обертаються навколо нашої планети, а також за допомогою автоматичних міжпланетних станцій, спрямованих до планет Сонячної системи. Випромінювання, яке проходить крізь земну атмосферу, вчені досліджують безпосередньо з поверхні Землі.

Спектр випромінювання * зорі з температурою T = 5800 K. Западини на графіку відповідають темним лініям поглинання, які утворюють окремі хімічні елементи*

Як відомо з курсу фізики, атоми можуть випромінювати або поглинати енергію електромагнітних хвиль різної частоти — від цього залежать яскравість і колір того чи іншого тіла. Для обчислення інтенсивності випромінювання вводиться поняття так званого чорного тіла, яке може ідеально поглинати й випромінювати електромагнітні коливання в діапазоні всіх довжин хвиль (безперервний спектр).

Червоний карлик

Зорі випромінюють електромагнітні хвилі різної довжини λ, але в залежності від температури поверхні найбільше енергії припадає на певну частину спектра λmax (рис. 1.1). Цим пояснюються різноманітні кольори зір — від червоного до синього (рис. 1.2, 1.3). Використовуючи закони випромінювання чорного тіла, які відкрили фізики на Землі, астрономи вимірюють температуру далеких космічних світил (рис. 1.4). За температури T = 300 K чорне тіло випромінює енергію переважно в інфрачервоній частині спектра, яка не сприймається неозброєним оком.

Молоді зорі. Різні кольори зір пояснюються електромагнітним випромінюванням різної довжини

За низьких температур таке тіло у стані термодинамічної рівноваги має справді чорний колі

Розподіл енергії у спектрі випромінювання зір. Колір зір визначає температуру поверхні T: сині зорі мають температуру 12 000 K, червоні — 3000 K. При збільшенні температури на поверхні зорі зменшується довжина хвилі λmax, яка відповідає максимуму енергії випромінювання

Поняття “абсолютно чорного тіла”.

https://images.unsplash.com/photo-1453668069544-b8dbea7a0477?ixlib=rb-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=1080&fit=max&ixid=eyJhcHBfaWQiOjkwODQwfQ
Kamesh Vedula

Абсолютно чорне тіло - фізична ідеалізація, застосовувана в термодинаміці. Тіло, що поглинає все електромагнітне випромінювання, яке падає на нього у всіх діапазонах і нічого не відображає. Незважаючи на назву, абсолютно чорне тіло саме може випускати електромагнітне випромінювання будь-якої частоти і візуально мати колір. Спектр випромінювання абсолютно чорного тіла визначається тільки його температурою.

Важливість абсолютно чорного тіла в питанні про спектр теплового випромінювання будь-яких (сірих і кольорових) тел взагалі, крім того, що воно являє собою найбільш простий нетривіальний випадок, полягає ще й у тому, що питання про спектрі рівноважного теплового випромінювання тіл будь-якого кольору і коефіцієнта відбиття зводиться методами класичної термодинаміки до питання про випромінюванні абсолютно чорного (і історично це було вже зроблено до кінця XIX століття, коли проблема випромінювання абсолютно чорного тіла вийшла на перший план).

Найбільш чорні реальні речовини, наприклад, сажа, поглинають до 99% падаючого випромінювання (тобто мають альбедо, рівне 0,01) у видимому діапазоні довжин хвиль, однак інфрачервоне випромінювання поглинається ними значно гірше. Серед тіл Сонячної системи властивостями абсолютно чорного тіла найбільшою мірою володіє Сонце.

Термін був введений Густавом Кірхгофа в 1862.

Практична модель

https://www.znaimo.com.ua/images/rubase_3_754260561_3182.jpg

Модель абсолютно чорного тіла

Абсолютно чорних тіл в природі не існує, тому у фізиці для експериментів використовується модель. Вона являє собою замкнуту порожнину з невеликим отвором. Світло, що потрапляє всередину крізь цей отвір, після багатократних віддзеркалень буде повністю поглинений, і отвір зовні буде виглядати зовсім чорним. Але при нагріванні цієї порожнини у неї з’явиться власне видиме випромінювання. Оскільки випромінювання, випущене внутрішніми стінками порожнини, перш, ніж вийде (адже отвір дуже мало), в переважній частці випадків зазнає величезна кількість нових поглинань і випромінювань, то можна з упевненістю сказати, що випромінювання всередині порожнини знаходиться в термодинамічній рівновазі зі стінками. (Насправді, отвір для цієї моделі взагалі не важливо, воно потрібно лише щоб підкреслити принципову наблюдаемость випромінювання, що знаходиться всередині; отвір можна, наприклад, зовсім закрити, і швидко прочинити лише тоді, коли рівновага вже встановилося і проводиться вимір).

Сучасні наземні та космічні телескопи

https://images.unsplash.com/photo-1532417768914-d26087f20e75?ixlib=rb-1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&w=1080&fit=max&ixid=eyJhcHBfaWQiOjkwODQwfQ
Jaredd Craig

Застосування в телескопобудуванні досягнень техніки і технологій. Протягом ХХ ст. прогресивні дослідження в галузі астрономії стикалися із серйозним обмеженням розмірів телескопів. Зазвичай дзеркала для телескопів виготовляли товстими, щоб уникнути деформації відображення на їхній поверхні, але ці дзеркала були дуже важкими. Саме тому телескопи тривалий час були великими, важкими і дорогими пристроями.

https://upload.wikimedia.org/wikipedia/commons/thumb/0/01/Big_asimutal_teleskop.jpg/1280px-Big_asimutal_teleskop.jpg

Телескоп БТА на Північному Кавказі**

Сучасні технологічні досягнення в телескопобудуванні дозволили значною мірою усунути ці недоліки. Активна оптика, комп’ютерне управління формою дзеркал телескопа дозволяють використовувати тонкі, легкі, а також «гнучкі» або сегментовані дзеркала Також тонкі дзеркала швидше охолоджуються в темряві й забезпечують більш чіткі зображення.

Телескоп «Джеймс Уебб»

Високошвидкісні комп’ютери дозволили астрономам будувати нові гігантські телескопи з унікальним дизайном. Європейська Південна обсерваторія побудувала високо у горах Анд, на Півночі Чилі телескоп Very Large Telescope (VLT). Він складається з чотирьох телескопів-веж з комп’ютером, що контролює рух дзеркал діаметром 8,2 м і лише 17,5 см завтовшки. Кожен із чотирьох телескопів може працювати самостійно або поєднувати своє світло з іншими, щоб працювати як єдиний велетенський телескоп.

Телескоп Very Large Telescope в Андах

Італійські та американські астрономи побудували в штаті Аризона (США) Large Binocular Telescope (Великий Бінокулярний телескоп), який тримає пару дзеркал діаметром 8,4 м на одному кріпленні.

Телескоп Gran Telescopio, розташований на вершині вулкана Пік на Канарських островах, тримає сегментоване дзеркало діаметром 10,4 м.

Сучасні комп’ютери здійснили революційний прогрес в конструюванні й управлінні телескопами. Майже всі великі телескопи керуються астрономами і техніками з контрольної кімнати, а деякі навіть можуть використовуватися астрономами, які перебувають за тисячі кілометрів від обсерваторії. Деякі телескопи повністю автоматизовані і здатні здійснювати спостереження взагалі без постійного нагляду. Це надало можливість проводити масштабні спостереження одразу за мільйонами космічних об’єктів і на хвилях різної довжини. Інформацію, що збирають сучасні телескопи, астрономи аналізуватимуть ще впродовж кількох наступних десятиліть.

Із початком космічної ери настає новий етап вивчення Всесвіту за допомогою штучних супутників Землі (ШСЗ) та АМС. Космічні методи мають суттєву перевагу перед наземними спостереженнями, тому що значна частина електромагнітного випромінювання зір і планет затримується в земній атмосфері. З одного боку, це поглинання рятує живі організми від смертельного випромінювання в ультрафіолетовій та рентгенівській частинах спектра, але з іншого — воно обмежує потік інформації від світил.

Кімната центру керування НАСА за місією телескопа «Габбл»

Космічний телескоп «Габбл» (— американський оптичний телескоп, розташований на навколоземній орбіті з 1990 р. Він є спільним проектом NASA і Європейського космічного агентства (ЄКА). Телескоп названо на честь Едвіна Габбла. Це унікальна багатоцільова орбітальна обсерваторія, найбільша серед запущених у космос у XX ст. Телескоп є першим апаратом із серії «Великі обсерваторії», за його допомогою здійснено багато важливих спостережень.

Космічний телескоп «Габбл»

Інші видатні космічні телескопи із серії «Великі обсерваторії»: «Комптон», «Чандра», «Спітцер»

Телескоп «Спітцер»

У наш час функціонує багато обсерваторій, які реєструють та аналізують випромінювання всіх діапазонів — від радіохвиль до гамма-променів. Найбільші серед них:

• Обсерваторія Джеміні (Близнюки), має два восьмиметрові телескопи у різних місцях, на Гаваях та в Чилі. Інфрачервоний телескоп Південний Близнюк (Gemini South) розташований на висоті 2740 м в Андах (Чилі), а його брат Північний Близнюк (Gemini North) — на вершині заснулого вулкану Мауна-Кеа, Гаваї. Потужні обсерваторії належить сімом країнам.

Обсерваторія Джеміні

• Єркська обсерваторія — астрономічна обсерваторія у Чиказькому університеті. У цій обсерваторії встановлено телескоп-рефрактор із діаметром головної лінзи 102 см (40 дюймів), виготовлений Елвіном Кларком; це був найбільший телескоп у світі до створення Маунт-Вілсоновського рефлектора.

• Маунт-Вілсон — астрономічна обсерваторія на горі Вільсон, на північний захід від Лос-Анджелеса, Каліфорнія.

Великий внесок у вивчення Всесвіту зробили також українські вчені: М. П. Барабашов, Ю. М. Кондратюк, М. К. Янгель та багато інших (рис. 3.7). За їхньою участю були створені перші космічні апарати, які почали досліджувати не тільки навколоземний простір, а й інші планети. Автоматичні міжпланетні станції серії «Луна», «Марс», «Венера» передали на Землю зображення інших планет із такою роздільною здатністю, яка в тисячі разів перевищує можливості наземних телескопів.

До 25-річчя запуску першого українського супутника «Січ-1» - Аерокосмічний  портал

Перший український супутник «Січ-1»

Людство вперше побачило навіть панорами чужих світів із дивовижними пейзажами. На цих АМС була встановлена апаратура для проведення безпосередніх фізичних, хімічних та біологічних експериментів.

**

Джерела: